3.1) The micro canonical ensemble 3_1_1) Continuous systems A(E,SE) (=> volue such that E ≤ E(9) ≤ E+ SE V(E) = volue such that E(E) SE $SL(E, SE) \simeq \omega(E) SE with <math>\omega(E) = \frac{d \mathcal{W}(E)}{dE}$ Fixing unts in place space: $\widehat{\mathcal{J}}(\mathcal{C}) = \frac{\mathcal{J}(\mathcal{C})}{\mathcal{J}^{3N}} \quad \begin{array}{c} \mathcal{L} & \rho\left(\mathcal{U}\right) = \frac{1}{\tilde{\mathcal{J}}(\mathcal{C})} & \text{if } \mathcal{E}(\mathcal{C}) \mathcal{C}[\mathcal{C}, \mathcal{C} + \mathcal{S} \mathcal{C}] \\ \end{array}$ together with Sie (1373) faithe phase space meagen so that $\langle O(q) \rangle = \int_{i=1}^{N} \frac{d^3 q_i d^3 q_i}{q_i} \frac{d^3 q_i}{q_i} \frac{d^3 q_i}{q_i} O(q) P(q)$ $= \int_{i=1}^{n} d^{3} \bar{q_{i}} d^{2} \bar{p_{i}} \partial(q) \frac{1}{\Sigma(E)}$ $E \left(\frac{1}{\Sigma(Q)} \right) \in E + S E$ =10 Optional at the level of classical stat mech. 3.1.2) The ideal gas

Distinguishable particles
$$S_m = Nh_p \ln \left[V \left(\frac{4m E e E}{3N A^2} \right)^{\frac{1}{2}} \right]$$

For undistinguishable particle, $S(E) = 0 \frac{S(E)}{N!}$ and
 $S_m(E) = Nh_p \ln \left[\frac{eV}{N} \left(\frac{6E e m E}{3N} \right)^{\frac{3}{2}} \right] = extensive
 $s_m = \frac{S_m}{N}$ is a function of $\frac{V}{N} d \frac{E}{N}$, that an intensive quantities.
Comments In quantum mechanis, particles are mares and
cannot be distinguished if they are of the some matern
and they should there be treated as indistinguishable
There dynamic quantities
From S, we can compute $\frac{1}{T_m} = \frac{\partial S_m}{\partial E} = \frac{3}{2} Nh_p \frac{1}{E} = 5 \frac{2}{2} Nh_p^2$
 $C_V = \frac{\partial E}{\partial T_m} = \frac{3}{2} Nh_p^2 = C_V Constant, independent of T.$$

3.1.3) Discrete systems: the two-level system In many systems, the variations of energy are not (solely a atall) due to notion in space, but instead due to changes in discute observable. An important excuple is that of localized electrons on a lattice in the presuce of a magnetic field. Takin

into accord the g ratio of the electrons, their energy is the (3)

$$E = -\mu h \sum_{i=1}^{\infty} \nabla_{i} - \sum_{i \in S} \nabla_{i} \nabla_{i}$$

much information on the system. One may there introduced (5) coanse quained description of the system by grouping microstates together into macrostates Qu. example: In a spin systers, a microstate Com is defined by the values $(S_{1}, -, S_{N}) = s \{ \ell_{m} \} = \{ (S_{1}, -, S_{n}) \}$ A maaostate (m (m) can be defined by the system "magnetisation" $m = \frac{1}{N} \sum_{i=1}^{N} S_i \quad (sitting \quad \mu=1)$ $(m) = \left((m), \text{such that } \frac{1}{N}; m \right)$ Thun are 2" microstates Qm and N+1 macrostates QM since NME [-N, -N+2, -N+4, ..., N-2, N3 = strong direntical reduction =s lunce the micro vs mano denomination. <u>probability</u> $\sum_{q_m} P(q) = \sum_{q_m} P_m(q_m) = 1$, where P((q_M) = Z P(q_M) is the probability of the macroshete. Because there are many 9 in Z, we can often simplify P(901) to extract in formation on the macrostates. = More is simpler. let us look at an important

3.1.4.2) Sub systems and equilibration $\begin{array}{cccccccccccccccccccccccccccccccccccc$	exaple : equilibration	6
$\begin{array}{c} (11) \Delta S (11) \Delta S $	3.1.4.2) Sub systems and equilibration	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1 2 System S into two subsystem S,	ds.
Microcanomical neares $f_{i}(Q) = f(Q_{i}, Q_{i}) = \frac{1}{SU(E(P))} S(E(P)-E)$ $S_{i}(E_{i}) = number of Configurations Q_{i} \neq S_{i} with energy E_{i}.Q_{i}(E_{i}) = \frac{1}{Q_{i}} Q_{i} \neq S_{i} with energy E_{i}.Q_{i}^{2} What an the typical value of E(d E_{i})^{2}We assum that S, S, d. S_{i} an very large such thatE \ge E_{i} + E_{i} (interaction energy E_{int} \ll E) = 0 E_{i} = E - E_{i}.SU(E) = \sum_{E_{i}} SU_{i}(E_{i}) \times SU_{i}(E_{i}) = E - E_{i}.To characterize f(E_{i}), we define the conserveding macrodulesManostoli: \int_{i} (Y_{i}, Y_{i}) such that E(Q_{i}) = E_{i}^{3}P(E_{i}, E_{i} = E - E_{i}) = \sum_{Q_{i}, Q_{i}} [E_{i} + E_{i} = \frac{1}{SU(E_{i} + E_{i})} = \frac{SU(E_{i}) \times SU(E_{i})}{SU(E)}f(E_{i}, Show that P(E_{i}) \text{ is product of a typical value } E_{i}^{*}.In large syster, we replaceSU(E) = \sum SU_{i} [E_{i}] SU(E_{i} = E_{i}] & \sum P(E_{i}) \frac{dE_{i}}{di} = 1P(E_{i}) \cong \overline{SU}_{i}.$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	دوم
$\begin{aligned} \mathfrak{L}_{1}(E_{1}) &= \text{number of Configurations } P_{1} \text{ of } S_{1} \text{ with langg } E_{1}. \\ \mathfrak{L}_{2}(E_{2}) &= \frac{P_{2}}{P_{1}} P_{2} \text{ of } S_{2} - E_{2}. \\ \begin{array}{l} \mathcal{Q}_{2}^{*} \text{ What an the typical values of } E_{1}dE_{2} \\ \mathcal{Q}_{2}^{*} \text{ What an the typical values of } E_{1}dE_{2} \\ \mathcal{Q}_{2}^{*} \text{ What an the typical values of } E_{1}dE_{2} \\ \mathcal{Q}_{2}^{*} \text{ What an the typical value of } E_{1}dE_{2} \\ \mathcal{Q}_{2}^{*} \text{ What an the typical value of } E_{1}dE_{2} \\ \mathcal{Q}_{2}^{*} \text{ What an the typical value of } E_{1}dE_{2} \\ \mathcal{Q}_{2}^{*} \text{ What an the typical value of } E_{1}dE_{2} \\ \mathcal{Q}_{2}^{*} \text{ What an the typical value of } E_{1}dE_{2} \\ \mathcal{Q}_{2}^{*} \text{ What an the typical value of } E_{1}dE_{2} \\ \mathcal{Q}_{2}^{*} \text{ What an the typical value of } E_{1}dE_{2} \\ \mathcal{Q}_{2}^{*} \text{ What an the typical value of } E_{2}dE_{2} \\ \mathcal{Q}_{2}^{*} \text{ What an the typical value } \mathcal{Q}_{2}dE_{2} \\ \mathcal{Q}_{2}^{*} \text{ What an the typical value } \mathcal{Q}_{2}dE_{2} \\ \mathcal{Q}_{2}^{*} \text{ What an the typical value } \mathcal{Q}_{2}dE_{2} \\ \mathcal{Q}_{2}^{*} \text{ What an the typical value } \mathcal{Q}_{2}dE_{2} \\ \mathcal{Q}_{2}^{*} \text{ What an the typical value } \mathcal{Q}_{2}dE_{2} \\ \mathcal{Q}_{2}^{*} \text{ What an the typical value } \mathcal{Q}_{2}dE_{2} \\ \mathcal{Q}_{2}^{*} \text{ What an the typical value } \mathcal{Q}_{2}dE_{2} \\ \mathcal{Q}_{2}^{*} \text{ What an the typical value } \mathcal{Q}_{2}dE_{2} \\ \mathcal{Q}_{2}^{*} \text{ What an the typical value } \mathcal{Q}_{2}dE_{2} \\ \mathcal{Q}_{2}^{*} \text{ What an the typical value } \mathcal{Q}_{2}dE_{2} \\ \mathcal{Q}_{2}^{*} \text{ What an the typical value } \mathcal{Q}_{2}dE_{2} \\ \mathcal{Q}_{2}^{*} \text{ What an typical value } \mathcal{Q}_{2}^{*} \mathcal{Q}_{2} \\ \mathcal{Q}_{2}^{*} \text{ What an typical value } \mathcal{Q}_{2} \\ \mathcal{Q}_{2}^{*} \text{ What an typical value } \mathcal{Q}_{2} \\ \mathcal{Q}_{2}^{*} \text{ What an typical value } \mathcal{Q}_{2} \\ \mathcal{Q}_{2}^{*} \text{ What an typical value } \mathcal{Q}_{2} \\ \mathcal{Q}_{2}^{*} \text{ What an typical value } \mathcal{Q}_{2} \\ \mathcal{Q}_{2}^{*} \text{ What an typical value } \mathcal{Q}_{2} \\ \mathcal{Q}_{2}^{*} \text{ What an typical value } \mathcal{Q}_{2} \\ \mathcal{Q}_{2}^{*} \text{ What an typical value } \mathcal{Q}_{2} \\ \mathcal{Q}_{2}^{*} \text{ What an typical value } \mathcal{Q}_{2} \\ \mathcal{Q}_{2}^{$	Microcanonical magne $P_{E}(Q) = P(Q_{1}, Q_{2}) = \frac{1}{\Sigma [E(Q)]} \delta(E(Q) - E(Q))$	シ
$\begin{split} & \mathcal{Q}_{2}(E_{2}) = \underbrace{\qquad}_{(2)} \mathcal{Q}_{2} \text{ of } S_{2} & \underbrace{\qquad}_{(2)} \mathcal{E}_{2} \text{ What an the typical values of } E_{1}\mathcal{R} E_{2}^{2} \\ & \mathcal{Q}_{2}^{2} \text{ What an the typical values of } E_{1}\mathcal{R} E_{2}^{2} \\ & \mathcal{W}_{0} \text{ assum that } S_{1} S_{1} \mathcal{R}_{2}^{2} \text{ an verg large fuch that} \\ & \mathcal{E} = E_{1} + E_{2}^{2} (\inf \text{Intraction lanegg} E_{int} \ll E) = 0 E_{2} = E - E_{1} \\ & \mathcal{D}(E) = \sum_{i}^{2} S_{1}(E_{1}) \times \mathcal{Q}_{2}(E_{2} = E - E_{1}) \\ & \text{To characterize } P(E_{i}), \text{ we define the conseparating macrowhere:} \\ & \text{Iacostatic } \mathcal{L}(\mathcal{U}_{1}, \mathcal{U}_{1}) \text{ such that } E(\mathcal{U}_{1}) = E_{1}^{2} \\ & \mathcal{P}(E_{1}, E_{2} = E - E_{1}) = \sum_{q_{1}, q_{1}}^{2} (E_{1} + E_{1}) = \frac{\mathcal{D}_{1}(E_{1}) \times \mathcal{Q}_{2}(E_{1})}{\mathcal{D}(E)} \\ & \mathcal{P}(E_{1}) \\ & \text{ if } s \text{ show that } P(E_{i}) \text{ is product at a typical value } E_{1}^{*}. \\ & \text{In large system, we replace} \\ & S_{1}(E_{1}) = \sum_{s, (E_{1})}^{2} \mathcal{D}(E_{2}) \\ & \mathcal{D}(E_{1}) = \sum_{s, (E_{1})}^{2} \mathcal{D}(E_{2}) \\ & \mathcal{D}(E_{2}) = \sum_{s, (E_{1})}^{2} \mathcal{D}(E_{2}) \\ & \mathcal{D}(E_{1}) = \sum_{s, (E_{1})}^{2} \mathcal{D}(E_{2}) \\ & \mathcal{D}(E_{1}) \\ & \mathcal{D}(E_{1}) = \sum_{s, (E_{1})}^{2} \mathcal{D}(E_{2}) \\ & \mathcal{D}(E_{1}) \\ & \mathcal{D}($	SI, (E) = number of configurations &, of S, with energy E,	
We assum that S, S, & S ₂ are very large such that $E \ge E_1 + E_2$ (interaction large $E_{int} \ll E$) $= 0 E_2 = E - E_1$ $SL(E) = \sum_{E_1} SL_1(E_1) \times SL_2(E_2 = E - E_1)$ To characterize $P(E_1)$, we define the conseponding macrowhte: Nanostati: $\int (Y_1, Y_2)$ such that $E(Y_1) = E_1^3$ $P(E_1, E_2 = E - E_1) = \sum_{q_1, q_2} \frac{1}{Q_1(E_1 + E_2) - E_1} = \frac{SL_1(E_1) \times SL_2(E_2)}{SL(E)}$ $E_1 (E_1)$ $E_1 (E_1)$ $E_2 (E_1)$ is product at a typical value E_1^* . In large syster, we replace $SL(E) = \sum SL_1(E_1) S_2(E - E_1) \& \sum P(E_1) \frac{dE_1}{dE_1} = \frac{P(E_1)}{2} \cong P(E_1)$	$\mathcal{Q}_{2}^{(E_{2})} = \frac{1}{(E_{2})^{2}} - 1$	
$E = E_{1} + E_{2} (interaction langg E_{int} \ll E) = bE_{2} = E - E,$ $S(E) = \sum_{e_{1}} S_{1}(E_{1}) \times S_{2}(E_{2} = E - E_{1})$ To characterize $P(E_{1})$, we define the conserved in y macrowhile: Nanoshot: $\int_{e_{1}} (Y_{1}, Y_{2}) \int_{uch} flut E(Y_{1}) = E_{1}^{2}$ $\frac{P(E_{1}, E_{2} = E - E_{1})}{P(E_{1})} = \frac{Z}{P(E_{1})} = \frac{A}{S(E_{1} + E_{2})} = \frac{S_{1}(E_{1}) \times S_{1}(E_{1})}{S(E)}$ $idt's \text{ show that } P(E_{1}) \text{ is product of a typical value } E_{1}^{*}.$ $In \text{ lange System, we replace}$ $S_{1}(E_{1}) = \sum_{e_{1}} S_{1}(E_{1}) S_{2}(E - E_{1}) \& \sum_{e_{1}} P(E_{1}) \frac{dE_{1}}{E_{1}} = 4 = \frac{P(E_{1})}{E_{1}} = P(E_{1})$	We assume that S, S, & Sz are very large such that	
$\begin{split} & \mathcal{Q}(\mathcal{E}) = \sum_{e_{i}} \mathcal{Q}_{i}(\mathcal{E}_{i}) \times \mathcal{Q}_{2}(\mathcal{E}_{2} = \mathcal{E} - \mathcal{E}_{i}) \\ & \text{To characterize } P(\mathcal{E}_{i}), \text{ we define the consepanding macrostate:} \\ & \text{Nanostate:} P(\mathcal{E}_{i}), \text{ we define that } \mathcal{E}(\mathcal{Q}_{i}) = \mathcal{E}_{i}^{3} \\ & \mathcal{Q}_{i}(\mathcal{E}_{i}, \mathcal{E}_{2} = \mathcal{E} - \mathcal{E}_{i}) = \sum_{q_{i}, q_{1}} \sum_{e_{1} \in \mathcal{E}_{i} \times \mathcal{E}} \frac{\mathcal{A}}{\mathcal{Q}(\mathcal{E}_{i} + \mathcal{E}_{1})} = \frac{\mathcal{Q}_{i}(\mathcal{E}_{i}) \times \mathcal{Q}_{2}(\mathcal{E}_{1})}{\mathcal{Q}(\mathcal{E}_{i} + \mathcal{E}_{1})} = \frac{\mathcal{Q}_{i}(\mathcal{E}_{i}) \times \mathcal{Q}_{2}(\mathcal{E}_{1})}{\mathcal{Q}(\mathcal{E})} \\ & \text{where the product of a trappical value } \mathcal{E}_{i}^{*}. \\ & \text{In large system, we replace} \\ & \mathcal{Q}_{i}(\mathcal{E}_{i}) = \sum_{i} \mathcal{Q}_{i}(\mathcal{E}_{i}) \mathcal{Q}_{2}(\mathcal{E} - \mathcal{E}_{i}) & \mathcal{E}_{i} = 2 \\ & \mathcal{Q}_{i}(\mathcal{E}_{i}) = \sum_{i} \mathcal{Q}_{i}(\mathcal{E}_{i}) \mathcal{Q}_{2}(\mathcal{E} - \mathcal{E}_{i}) & \mathcal{E}_{i} = 2 \\ & \mathcal{Q}_{i}(\mathcal{E}_{i}) = \sum_{i} \mathcal{Q}_{i}(\mathcal{E}_{i}) \mathcal{Q}_{2}(\mathcal{E} - \mathcal{E}_{i}) \\ & \mathcal{Q}_{i}(\mathcal{E}_{i}) = \sum_{i} \mathcal{Q}_{i}(\mathcal{E}_{i}) \mathcal{Q}_{i}(\mathcal{E}_{i} - \mathcal{E}_{i}) \\ & \mathcal{Q}_{i}(\mathcal{E}_{i}) = \sum_{i} \mathcal{Q}_{i}(\mathcal{E}_{i}) \mathcal{Q}_{i}(\mathcal{E}_{i} - \mathcal{E}_{i}) \\ & \mathcal{Q}_{i}(\mathcal{E}_{i}) = \sum_{i} \mathcal{Q}_{i}(\mathcal{E}_{i}) \\ & \mathcal{Q}_{i$	E2E1+E2 (intraction langg Eint <= = == ====	I
To characterize $P(E_i)$, we define the conseponding macrostrates Naccostrates: $\frac{1}{2}(P_i, P_i)$ such that $E(P_i) = E_i^3$ $P(E_i, E_i = E - E_i) = \frac{1}{P_i, P_i} = \frac{1}{P_i(E_i + E_i)} = \frac{S_i(E_i) \times S_i(E_i)}{S_i(E)}$ Let's show that $P(E_i)$ is peaked at a typical value E_i^* . In large system, we replace $S_i(E) = \sum S_i(E_i) S_i(E - E_i) & \sum P(E_i) \frac{dE_i}{dE_i} = 1$ $\frac{P(E_i)}{E_i} = \tilde{P}(E_i)$	$\mathcal{SL}(\mathcal{E}) = \sum_{e_1} \mathcal{SL}(\mathcal{E}_1) \times \mathcal{SL}(\mathcal{E}_2 = \mathcal{E} - \mathcal{E}_1)$	
$\frac{P(E_{i}, E_{2} = E - E_{i})}{= P(E_{i})} = \frac{Z}{q_{i}, q_{1} E_{i}+E_{2} = \frac{A}{\mathcal{L}(E_{i}) + E_{2}}} = \frac{\mathcal{L}_{i}(E_{i}) \times \mathcal{L}_{2}(E_{1})}{\mathcal{L}(E)}$ $\frac{P(E_{i})}{= P(E_{i})} = \frac{P(E_{i})}{q_{i}, q_{1} E_{i}+E_{2} = E} \frac{\mathcal{L}_{i}(E_{i}) \times \mathcal{L}_{2}(E_{1})}{\mathcal{L}(E)} = \frac{\mathcal{L}_{i}(E_{i}) \times \mathcal{L}_{2}(E_{1})}{\mathcal{L}(E)}$ $\frac{P(E_{i})}{In} = \frac{P(E_{i})}{In} \frac{P(E_{i})}{In} \frac{P(E_{i})}{In} \frac{P(E_{i})}{In} \frac{P(E_{i})}{In} \frac{P(E_{i})}{In} = \frac{P(E_{i})}{In} \frac{P(E_{i})}{In} \frac{P(E_{i})}{In} = \frac{P(E_{i})}{In} \frac{P(E_{i})}{In} \frac{P(E_{i})}{In} = P(E_$	To characterize P(E,), we define the conseponding macroitmle? Non shat . S (a a) had the to (G) - E?	
let's show that $P(\bar{e}_i)$ is peaked at a typical value E_i^* . In large system, we replace $SL(E) = \sum SL_i(E_i) SL_i(E - E_i) \& \sum P(E_i) \frac{dE_i}{dE_i} = 1 \qquad \frac{P(E_i)}{dE_i} = \tilde{P}(E_i)$	$\frac{P(E_{i},E_{l}=E-E_{i})}{=P(E_{i})} = \frac{Z}{q_{i},q_{l}} \frac{A}{E_{l} \times E} = \frac{S_{l}(E_{i}) \times S_{l}(E_{l})}{S_{l}(E_{i})}$	
In large system, we replace $SL(E) = \Sigma SL_1(E_1) SL_2(E - E_1) \& \sum P(E_1) \frac{dE_1}{dE_2} = 1 \qquad \frac{P(E_1)}{dE_2} \simeq \widetilde{P}(E_1)$	let's show that P(E,) is peaked at a typical value E.	
$\mathcal{S}(\mathcal{E}) = \Sigma \mathcal{S}_1(\mathcal{E}_1) \mathcal{S}_2(\mathcal{E} - \mathcal{E}_1) \mathcal{E} \sum \mathcal{P}(\mathcal{E}_1) \frac{d\mathcal{E}_1}{d\mathcal{E}_1} = 1 \qquad \frac{\mathcal{P}(\mathcal{E}_1)}{d\mathcal{E}_1} \simeq \widetilde{\mathcal{P}}(\mathcal{E}_1)$	In large syster, we replace	
by their continuous annomination $\simeq \int dE_i \tilde{P}(E_i)$	$SL(E) = \sum_{e_1} S_1(e_1) S_2(E - e_1) \& \sum_{e_1} P(E_1) \frac{de_1}{de_1} = 1 \qquad \frac{P(E_1)}{de_1} = 1 \qquad \frac{P(E_1)}{d$	<u>⊾</u> ͡P(Ed)

$$\begin{split} \mathfrak{L}(\varepsilon) &= \int d\varepsilon_{1} \quad \mathfrak{L}_{1}(\varepsilon_{1}) \quad \mathfrak{L}_{2}(\varepsilon-\varepsilon_{1}) \quad d \quad \int \widetilde{P}(\varepsilon_{1}) d\varepsilon_{1} &= 1 \\ \xrightarrow{\varphi \in \Gamma} \varepsilon_{1}(\varepsilon_{1}) \quad \varphi = \varepsilon_{1}(\varepsilon_{1}) \quad \varphi = \varepsilon_{1}(\varepsilon_{1}) \quad \varphi = \varepsilon_{1}(\varepsilon_{1}) \quad \varphi = \varepsilon_{1}(\varepsilon_{1}) \\ \mathbb{V}\varepsilon \quad d\varepsilon_{1} \quad \varepsilon_{1}(\varepsilon_{1}) \quad \varepsilon_{1}(\varepsilon-\varepsilon_{1}) \\ \mathbb{V}\varepsilon \quad d\varepsilon_{1} \quad \varepsilon_{1}(\varepsilon_{1}) \quad \varepsilon_{1}(\varepsilon-\varepsilon_{1}) \\ \mathfrak{L}(\varepsilon) &= \int d\varepsilon_{1} \quad \varepsilon_{1}^{S_{1}(\varepsilon_{1})} \quad \varepsilon_{1}^{S_{1}(\varepsilon-\varepsilon_{1})} \\ = \int d\varepsilon_{1} \quad \varepsilon_{1}^{S_{1}(\varepsilon_{1})} \quad \varepsilon_{1}^{S_{1}(\varepsilon-\varepsilon_{1})} \\ \mathbb{V}\varepsilon \quad \mathcal{V}\varepsilon \quad \varepsilon_{1} \quad \varepsilon_{1}^{S_{1}(\varepsilon_{1})} \quad \varepsilon_{1}^{S_{1}(\varepsilon-\varepsilon_{1})} \\ \mathbb{V}\varepsilon \quad \mathcal{V}\varepsilon \quad \varepsilon_{1} \quad \varepsilon_{1}^{S_{1}(\varepsilon_{1})} \quad \varepsilon_{1}^{S_{1}(\varepsilon-\varepsilon_{1})} \\ \mathbb{V}\varepsilon \quad \varepsilon_{1} \quad \varepsilon_{2}^{S_{1}(\varepsilon_{1})} \quad \varepsilon_{1}^{S_{1}(\varepsilon-\varepsilon_{1})} \\ \mathbb{V}\varepsilon \quad \varepsilon_{1} \quad \varepsilon_{2}^{S_{1}(\varepsilon_{1})} \quad \varepsilon_{1}^{S_{1}(\varepsilon-\varepsilon_{1})} \\ \mathbb{V}\varepsilon \quad \varepsilon_{1}^{S_{1}(\varepsilon_{1})} \quad \varepsilon_{1}^{S_{1}(\varepsilon-\varepsilon_{1})} \\ \mathbb{V}\varepsilon \quad \varepsilon_{1}^{S_{1}(\varepsilon-\varepsilon_{1})} \quad \varepsilon_{1}^{S_{1}(\varepsilon-\varepsilon_{1})} \quad \varepsilon_{1}^{S_{1}(\varepsilon-\varepsilon_{1})} \\ \mathbb{V}\varepsilon \quad \varepsilon_{1}^{S_{1}(\varepsilon-\varepsilon_{1})} \quad \varepsilon_{1}^{S_{1}(\varepsilon-\varepsilon_{1})} \quad \varepsilon_{1}^{S_{1}(\varepsilon-\varepsilon_{1})} \\ \mathbb{V}\varepsilon \quad \varepsilon_{1}^{S_{1}(\varepsilon-\varepsilon_{1})} \quad \varepsilon_{1}^{S_{1}(\varepsilon-\varepsilon_{1})} \quad \varepsilon_{1}^{S_{1}(\varepsilon-\varepsilon_{1})} \quad \varepsilon_{1}^{S_{1}(\varepsilon-\varepsilon_{1})} \\ \mathbb{V}\varepsilon \quad \varepsilon_{1}^{S_{1}(\varepsilon-\varepsilon_{1})} \quad \varepsilon_{1}^{S_$$

S, and Sz, which is santines called the Oth law of 9 thermodynamics. Additivity of the entropy? $S(e) = h_{B} h SL(e) \simeq h_{B} h SL_{i}(e_{i}^{*}) + h_{B} h SL_{i}(e_{i}^{*}) = S_{i}(e_{i}^{*}) + S_{2}(e_{i}^{*})$ Themo dynamic stahility E_1^* Maximizes $S_1(E_1) + S_2(E - E_1) = \frac{\partial S_1}{\partial E_1} - \frac{\partial S_2}{\partial E_2} = 0$ (extremum) $k \frac{\partial^2 S_l}{\partial \bar{\varepsilon}_l^{\ l}} + \frac{\partial^2 S_2}{\partial \bar{\varepsilon}_l^{\ l}} < 0 \quad (maximum)$ $\frac{\partial S}{\partial E} = \frac{1}{T} \implies \frac{\partial^2 S}{\partial E^2} = -\frac{1}{T^2} \frac{\partial T}{\partial E} = -\frac{1}{C_V T^2} \implies \frac{1}{C_V} + \frac{1}{C_V} \ge 0$ The themodynamic stability of a system requires a positive heat capacity. $\frac{\text{Fluctuations of E_{i}}^{\circ}}{P(E_{i}) = \frac{1}{2(e)}} e^{\frac{N}{40} \left[\Delta_{i}(e_{i}) - \Delta_{i}(e - E_{i}) \right]} \frac{N}{2e} \left[\Delta_{i}(E_{i}) - \Delta_{i}(e_{i}^{*}) + \Delta_{i}(e - E_{i}) - \Delta_{i}(e - E_{i}^{*}) \right]}$ -00 if E, = E, = strongly peaked distribution Expanding close to ErzEt leads to => $P(\varepsilon_1) \sim \exp\left[-\frac{(\varepsilon_1 - \varepsilon_1^*)^2}{2 \, \mu \tau^2}\right]$ (*)

Proofo $P(\mathcal{E}_{i}) \cong e^{\frac{N}{h_{i}}} \left[J_{i}(\mathcal{E}_{i}) - J_{i}(\mathcal{E}_{i}^{*}) + J_{2}(\mathcal{E}-\mathcal{E}_{i}) - J_{2}(\mathcal{E}-\mathcal{E}_{i}^{*}) \right]$ $\simeq \exp\left[\frac{W}{4B}\left[\frac{\partial S_{I}}{\partial \bar{e}_{i}}\left(E_{i}-E_{i}^{*}\right)+\frac{1}{2}\frac{\partial^{2}S_{i}}{\partial \bar{e}_{i}^{2}}\left(E_{i}-E_{i}^{*}\right)^{2}-\frac{\partial \xi_{L}}{\partial \bar{e}_{i}}\left(E_{i}-E_{i}^{*}\right)+\frac{1}{2}\frac{\partial^{2}S_{i}}{\partial \bar{e}_{i}^{2}}\left(E_{i}-E_{i}^{*}\right)^{2}\right]$ $\simeq \exp\left[\frac{1}{4}\left(\frac{1}{\tau_{i}}\left(\varepsilon_{i}-\varepsilon_{i}^{*}\right)-\frac{\left(\varepsilon_{i}-\varepsilon_{i}^{*}\right)^{2}}{2C_{V}T^{2}}-\frac{1}{\tau_{2}}\left(\varepsilon_{i}-\varepsilon_{i}^{*}\right)-\frac{\left(\varepsilon_{i}-\varepsilon_{i}^{*}\right)^{2}}{2C_{V}T^{2}}\right]\right]$ where we used $\lambda_{2}(E-E_{i}) = \lambda_{2}(E-E_{i}^{*}) + (E_{i}-E_{i}^{*}) (-\lambda_{2}^{\prime}(E-E_{i}^{*})) + \frac{1}{2} (E_{i}-E_{i}^{*})^{2} \lambda_{2}^{\prime\prime}(E-E_{i}^{*})$ Since $C_V = \frac{\partial E}{\partial T}$ and $E \propto N$, thus $C_V \sim N$ $(*) = \leq \langle E_i - E_i^* \rangle^2 > \wedge C_v \wedge N = E_i - E_i^* \wedge \sqrt{N} \ll E_i, E_i^*$ The relative flucturations of E_r vanish as $N \rightarrow \infty$. Again, we must $C_r > 0$ for $P(E_r)$ to be momentizable. Connert: Another way to see that Cuis extensive is through ; ∂S - ∂S ∂E = CV =0 CvαN. This also allows calculating Say $S(T) - S(o) = \int_{0}^{1} dT \frac{Cv}{T}$ <u>Ilind laa</u>: At low terperateures, quanteur fluctuations become important and classical statistical mechanics is not valid any-a. At T=0, the syster is in the grand state so that S= h by, when g is the degeneracy of the grand state. If g=1, S(0)=0. Typically,

quartern flectuations make y subextusive so that SCO) «N& (1) Second law of themo dynamics Take two systems with initial energy $E_i de E_2$. It then evel in contact with each other and they will relax to $E_i^* de E_2^*$ such that $S_{final} = S_{r}(E_{i}^{*}) + S_{L}(E_{L}^{*}) \ge S_{ini}tial = S_{r}(E_{i}) + S_{L}(E_{L})$ => the entropy of the isolated syster S=S, US, has increased \implies this is the second law of the modynamics. Note that it rulies on $N - \omega \infty$.